On the Kudla-Rapoport conjecture at a place of bad reduction (Part II)
ABSTRACT
The Kudla-Rapoport conjecture predicts a relation between the arithmetic intersection numbers of special cycles on a unitary Shimura variety and the derivative of representation densities for hermitian forms at a place of good reduction. In this talk, I will present a variant of the Kudla-Rapoport conjecture at a place of bad reduction. Additionally, I will discuss a proof of the conjecture in several new cases in any dimension. This is joint work with Qiao He and Zhiyu Zhang.