Skip navigation

Main Menu

Global Menu

side title

Mathematics

Search

Seminar

Publication

Seminar View

Seminar
NUMBER  
AUTHOR Kim, Doheon
TITLE Convergence and error estimates for time-discrete consensus-based optimization algorithms
ARCHIVE  
FILE  
JOURNAL NUMERISCHE MATHEMATIK, 2021
ABSTRACT We present convergence and error estimates of modified versions of the time-discrete consensus-based optimization (CBO) algorithm proposed in Carrillo et al. (ESAIM: Control Optim Calc Var, 2020) for general non-convex functions. In authors' recent work (Ha et al. in Math Models Meth Appl Sci 30:2417-2444, 2020), rigorous error analysis of a modified version of the first-order consensus-based optimization algorithm proposed in Carrillo et al. (2020) was studied at the particle level without resorting to the kinetic equation via a mean-field limit. However, the error analysis for the corresponding time- discrete algorithm was not done mainly due to lack of discrete analogue of Ito's stochastic calculus. In this paper, we provide a simple and elementary convergence and error analysis for a general time-discrete consensus-based optimization algorithm, which includes modifications of the three discrete algorithms in Carrillo et al. (2020), two of which are present in Ha et al. (2020). Our analysis provides numerical stability and convergence conditions for the three algorithms, as well as error estimates to the global minimum.
  • before page
  • list
  • next page
Seminar List

keyword

fiel&date

~